
 25

2
Background

This chapter defines the basic concepts used in this dissertation and

describes the context of the work. The essential concepts of exception handling

mechanisms and aspect-oriented programming (AOP) are presented as well as the

AspectJ language and other languages that incorporate AO concepts in order to

address limitations of object-oriented programming. The way the exception

handling mechanisms relate to AO programming is also presented. Finally, a brief

introduction about verification approaches for exception handling code is given.

2.1.
Aspect-Oriented Programming

Aspect Oriented Programming (AOP) (Kiczales, 1996; Kiczales et al.,

1997) has been proposed as a paradigm for improving separation of concerns in

software design and implementation. It proposes a new abstraction, called Aspect,

to capture concerns that cannot be easily expressed by the elements of traditional

decomposition approaches (e.g., classes, functions); such concerns are usually

spread over several system modules and tangled with other concerns.

AOP have been increasingly used to modularize crosscutting concerns such

as persistence (Rashid and Chitchyan, 2003; Soares et al., 2006), distribution

(Soares et al., 2006), and design patterns (Hannemann and Kiczales, 2002; Garcia

et al., 2005). It has been empirically observed that AOP decompositions promotes

modularity (Garcia et al., 2005), design stability (Greenwood et al., 2007), and

that aspects abstractions can be used to modularize the exception handling

concerns in some situations (Filho et al., 2007).

2.1.1.
Aspect Weaving

Aspects has the ability of externally modifying the behavior of programs

(Krishnamurthi et al., 2004; Aldrich, 2005). Such modifications can happen

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 26

statically – manipulating the structure of program source code – or dynamically –

using the ability of reflecting on the state of program’s execution to conditionally

modify it. The composition process between aspects and the elements that

composes primary decomposition of a software system (e.g., classes) is called

aspect weaving (Kiczales et al., 1997), and involves making sure that aspects will

affect the appropriate points in the code.

There are no strict rules about when the aspect weaving should be done. In

current AO languages aspect weaving can happen at compile-time, load-time or

run-time. The main advantages of compile-time weaving are that it avoids

unnecessary runtime overload and that static checks performed during compilation

can expose many composition errors. On the other hand it requires that all the

affected code (and the code referenced by it) to be present during weaving. When

performing load-time weaving, the class loader reads a configuration file that

specifies the aspects to be woven when applications are loaded. Finally, the run-

time weaving allows advices to be included and removed at runtime. It usually

requires the definition of proxies for every element that will be affected by a new

behavior, as in Spring AOP (Johnson et al., 2005). Both load-time and run-time

weaving bypasses the static checks performed during compilation that could

expose many composition errors. On the other hand the aspect weaving can

happen on demand, which opens a new realm of possibilities for software

composition.

2.1.2.
Obliviousness and Quantification Properties

Filman and Friedman (2005) have identified two properties, quantification

and obliviousness, which they believe are fundamental for aspect-oriented

programming. The quantification property refers to the desire of programmers to

write programming statements with the following form: “In programs P,

whenever condition C arises, perform action A”. The AspectJ programming

language, for example, supports this property by means of the pointcut, join point

and advice mechanisms described next (Section 2.1.4). Obliviousness establishes

that programmers of the base code (i.e., the classes that will be affected by the

aspects) do not need to be aware of the aspects which will affect their code. It

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 27

means that programmers do not need to prepare the base code to be affected by

the aspects. The following sentence from the authors synthesizes both properties:

“AOP can be understood as the desire to make quantified statements about the

behavior of programs, and to have these quantifications hold over programs

written by oblivious programmers.” (Filman and Friedman, 2005)

2.1.3.
Crosscutting Interfaces (XPI)

Sullivan et al (2005) have compared a development methodology based on

the obliviousness property with a new AO development approach based on design

rules (Baldwin and Clark, 2000). In their approach, the authors propose the

specification of interfaces between the base code and the aspects, which determine

the anticipated exposition of join points from the base code before its

implementation. These join points are used subsequently in the implementation of

the aspects. The design rule based approach (Sullivan et al., 2005) addresses the

decoupling of the base and aspect code by offering a clear specification of the

interaction and contracts between them and by allowing their parallel

development. In the study, the authors have also observed how their approach

helps to reduce or eliminate several disadvantages of the obliviousness approach,

such as, the codification of complex and fragile pointcut expressions and the tight

coupling of the aspects to changeable and complex details from the base code.

Griswold et al (2006) have recently shown how the interfaces between the

base code and the aspects, called crosscutting interfaces (XPIs) and previously

proposed by the design rules based approach (Sullivan et al., 2005), can be

partially implemented in AspectJ. The XPIs are used to abstract a crosscutting

behavior existing in the base code. The implementation of XPIs in AspectJ is

composed of: (i) a syntactic part – which allows to expose specific join points by

specifying pointcuts in aspects; and (ii) a semantic part – which details the

meaning of the exposed join points and it can also define constraints (such as, pre-

and post-conditions) that must be satisfied when extending those join points

(Griswold et al., 2006). This semantic part can be partially implemented with

enforcement aspects (implemented with declare error and declare warning

AspectJ constructs) (Colyer, 2004) or by defining contract aspects which

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 28

guarantee specific constraints that are satisfied before and after the advices

execution.

2.1.4.
Aspect J

AspectJ (Kiczales et al., 2001a; Kiczales et al., 2001b; Colyer, 2004) is the

most used aspect-oriented programming language. It is a general-purpose

extension to Java, which allows developers to structure a program using both

classes and aspects to represent crosscutting concerns. The aspect abstraction in

AspectJ is composed of: pointcuts, advices, inter-type declarations, and internal

methods and attributes. Join points are well defined locations in the execution of a

program (e.g., method call, method execution). Pointcuts are represented as

expressions that identify (match) one or more join points in code. Advices are

method-like constructions that contain the additional behavior that should be

included on the join point matched by a pointcut. Inter-type declarations specify

new attributes or methods to be introduced into specific types on the base code

(the code affected by aspects).

Therefore, pointcuts enable a developer to specify when an advice should be

executed. One example is the rule “the performance tracking code should be

executed after each call of a void public method.” This rule can be represented by

an aspect in AspectJ language, as illustrated in the code snippet below.

1. aspect PerformanceTracking {

2.

3. public pointcut anyMethodCall() :

4. call(public void *(..));

5.

6. void around() : anyMethodCall(){

7. long start = System.currentTimeMillis();

8. proceed();

9. long elapsed = System.currentTimeMillis()-start;

10. System.out.println(“Elapsed time:” + elapsed);

11. }

12. }

 Listing.1. Code snippet an aspect in AspectJ.

Pointcut:

Identify points in the code that

should be intercepted.

Advice:

define the

behavior to

be added on

such points

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 29

The code above illustrates a simple aspect for tracking the performance of

every public method call of a program. This aspect, basically, consists of a

pointcut that matches every public method call (lines 3-4) and an advice (lines 6-

8) that tracks the performance of every method matched by the pointcut. Next

sections present the main AspectJ constructs in more detail.

2.1.4.1.
AspectJ Main Constructs

AspectJ constructs make it possible: (i) to define additional implementation

to run at certain well defined points in the execution of a program, as illustrated

previously in Listing 1 (also known as dynamic crosscutting capabilities); and (ii)

to change the static structure of a software system by adding class members,

changing the classes’ hierarchy, or replacing checked by unchecked exceptions

(also known as static crosscutting capabilities).

The join point model specifies the set of points in the execution of a

program which can be intercepted by aspects, in other words, the join points that

can be referred on pointcut expressions (Kiczales et al., 2001b). Some of the well

defined points that comprise the join point model in AspectJ are: a call to a

method (see lines 3-4 in Listing 1 above), an access to an attribute, an object

initialization, and an exception handler.

Besides allowing the developer to specify which methods or fields should be

intercepted, AspectJ also provides some pointcut designators specifically for

scoping purposes. These enable us to extend the pointcut expression with a scope

designator so that we can match only a subset of interest. For instance, we can

extend the pointcut presented in Listing 1 above in the following way:

public pointcut anyMethodCall() :

 call(public void *(..)) && within(MyClass);

This pointcut expression will match only the call to public methods within a

specific a class or interface, called MyClass in the code snippet above.

Moreover, AspectJ also offers control-flow pointcut designators that enable us to

match join points based on what is happening at runtime. The two pointcut

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 30

designators that match join points occurring within a given control flow during the

runtime execution of a program are: cflow and cflowbellow.

Table 1 presents the main elements that compose the join point model of

AspectJ language, and their corresponding pointcut descriptors. In Table 1

<Signature> is a method or constructor signature, <Expression> is a boolean

expression, and <StaticScope> can specifies reference types (i.e., arrays, classes

or interfaces) or packages names. A pointcut expression is, therefore, defined by

composing pointcut designators through the use of || (or), && (and), and ! (not)

operators.

Pointcut Descriptor Description

call(<Signature>) Matches method or constructor call.

execution(<Signature>) Matches method or constructor execution by Signature

get(<Signature>) Matches field access by Signature

set(<Signature>) Matches field assignment by Signature

handler(<Type>) Matches the handler execution of a specific exception type.

adviceexecution Matches the execution of every advice

if(<Expression>) Matches executing code when the Expression evaluates to true

within(<StaticScope>) Static scope designator that matches a join point arising from the

execution of logic defined in specific classes, interfaces or

packages defined by the <StaticScope>.

withincode(<Signature>) Static scope designator that matches executing code defined in

the method or constructor with a given Signature

cflow(<Pointcut>) Dynamic scope designator that matches executing code in the

control flow derived from a specific join point (specified by

Pointcut)

cflowbelow(<Pointcut>) Dynamic scope designator that matches executing code in the

control flow derived below a specific join point (specified by

Pointcut)

Table 1. Main pointcut designators of AspectJ language.

The AspectJ constructs that enable such static crosscutting are called inter-

type declarations. Examples of inter-type declarations are the declare parents

and declare soft constructs. The declare parents construct declares that a

type defined on the base code should implement (or extend) types specified by

this construct. For instance, we can add a declare parents on the code of the

PerformanceTracking aspect presented in Listing 1. This construct declares that

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 31

MyClass implements the interface MonitoredClass (line 2), which can be

used to restrict the scope of the pointcut (line 4).

1. aspect PerformanceTracking {

2. declare parents: MyClass implements MonitoredClass;

3. public pointcut anyMethodCall() :

4. call(public void *(..)) && within(MonitoredClass);

5. ...

The declare soft construct converts (wraps) a given exception into a

specialized runtime exception, named SoftException, in a specific scope. The

syntax is as following: declare soft : <someException> : <scope>. The

scope is specified by a pointcut which matches a subset of join points in which

the someException will be wrapped. Additional information about static and

dynamic crosscutting can be found in the AspectJ Programming Guide (2007).

2.1.5. Other AO Languages

Aspect-oriented programming (AOP) is becoming increasingly popular in

the Java environment. Therefore, in addition to AspectJ other languages have

emerged. This section presents the characteristics of other mature AO languages,

based in Java environment: CaesarJ (Mezini and Ostermann, 2003), JBoss AOP

(Burke and Brock, 2003), and Spring AOP (Johnson et al., 2005; Johnson, 2007).

CaesarJ was proposed by Mezini and Ostermann (2003). It is based on the

concept called virtual class. A virtual class, like a virtual method, can have

different meanings, which depends on its context of use. Although the virtual

class concept improves the composition flexibility, the crosscutting capabilities of

the aspects defined in CaesarJ are very similar to the ones developed in AspectJ –

since it reuses the join point model and pointcut designators of AspectJ language.

JBoss AOP
2
 (Burke and Brock, 2003) was first released in 2003 as an

addition to the JBoss application server framework (Fleury and Reverbel, 2003). It

uses a XML-based aspect declaration style. In this style aspects are represented as

Java classes and the advice bodies are implemented using plain Java methods. The

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 32

pointcut expressions, the aspects and the advice signatures are represented on

XML files. JBoss AOP allows the run-time weaving described before.

Spring AOP (Johnson et al., 2005; Johnson, 2007) was first released in 2004

as an addition to the Spring framework. Similar to JBoss AOP, the advice

implementation in Spring AOP is a plain Java method. The XML declares the

special classes called beans which gives the Spring framework access to the

application objects and specifies the matching pattern for the code to be

intercepted (the pointcut expressions).

2.2.
Exception Handling Mechanisms

A software system consists in a number of components that cooperates to

deliver a set of services. A failure occurs when the service delivered by the system

deviated from what was specified. An error is an abnormal computation state that

can lead to a failure. A fault is the cause of an error - it can be a physical defect on

hardware or a flaw on software. Developers of dependable systems often refer to

faults as exceptions, as they are expected to manifest rarely during the system

execution.

Modern applications have to cope with an increasing number abnormal

computation states that arise as a consequence of faults in the application itself

(e.g., access of null references), noisy user inputs or faults in underlying

middleware or hardware. Currently, the exception handling mechanism

(Goodenough, 1975; Garcia and Rubira, 2001) is one of the most used schemes

for detecting and recovering such exceptional conditions. It enables the developer

to structure an application in a way that the code that deals with the exceptional

conditions will be defined separate from the code that deals with the normal

execution flow of the program. The separation between normal and exceptional

flow of a program, makes developers to systematically think beforehand of

erroneous conditions that may happen during program execution, and then prepare

the software to deal with them.

The use of exception handling in the construction of several real-world

systems and its addition in many mainstream programming languages, such as

2
 http://www.jboss.org/jbossaop

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 33

Java, Ada, and C++, attest its importance (Garcia and Rubira, 2001). However,

there are small differences in the way exceptions are represented and handled in

each language. This thesis focus on the exception handling mechanism

implemented in Java language - the one also adopted in AspectJ. Next sections

briefly describes how the exception handling mechanism of Java language works

and relate each element of such mechanism with the AO main concepts.

2.2.1.
Exception Handling Mechanism in AspectJ Programs

In order to support the reasoning about the exception flows in aspect-

oriented programs we present the main concepts of an exception handling

mechanism implemented in Java language and correlate them with the constructs

available in most AO languages (Coelho et al., 2008). An exception handling

mechanism is comprised by four main concepts: the exception, the exception

signaler, the exception handler, and the exception model which defines how

signalers and handlers are bound.

Exception Signaler. An exception is raised by an element - method or

method-like construct e.g., advice - when an abnormal computation state is

detected. Whenever an exception is raised inside an element that cannot handle it,

it is signaled to the element’s caller. The exception signaler is the element that

detects the abnormal state and raises the exception. In Figure 1, the advice a1

detects and abnormal condition and raises the exception EX. Since this advice

intercepts the method mA, such exception will be included into method mA

together with the additional behavior encapsulated on the advice.

Exception Handler. The exception handler is the code invoked in response

to a raised exception. It can be attached to protected regions, e.g. methods, classes

and blocks of code, or specific exceptions (Garcia and Rubira, 2001). The

exception handlers are responsible for performing the recovery actions necessary

to bring the software system back to a normal state and, whenever this is not

possible, to log the exception and abort the system in an expected safe way. In AO

programs, a handler can be defined in either a method or an advice. Specific types

of advice (e.g. around and after advice (Colyer, 2004))have the ability to handle

the exceptions thrown by the methods they advise.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 34

Exception Model. In many languages, the search for the handler to deal with

a raised exception occurs along the dynamic invocation chain. This is claimed to

increase the software reusability, since the invoker of an operation can handle it in

a wider context (Goodenough, 1975). In AO programs the handler of one

exception can be present:

(i) in one of the methods in the dynamic call chain of the signaler; or

(ii) in an aspect that advises any of the methods in the signaler’s call

chain.

Figure 1 depicts one exceptional scenario in which one advice (a1) is

responsible for signaling the EX exception, and other advice (a2) is responsible

for handling EX, i.e. a2 intercepts one of the methods in the dynamic call chain

and handles this exception.

Handler EB

Method mA

Method mB

E X

Normal Interface

Handler EA

Handler EC
Method mC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

method call

method-like contstruct

exception ptopagation

Legend :

crosscuts

protected region

Handler EB

Method mA

Method mB

E X

Normal Interface

Handler EA

Handler EC
Method mC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

Handler EB

Method mA

Method mB

E X

Normal Interface

Handler EA

Handler EC
Method mC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

method call

method-like contstruct

exception ptopagation

Legend :

crosscuts

protected region

method call

method-like contstruct

exception ptopagation

Legend :

crosscuts

protected region

Figure 1. Exception-aware method call chain in AO programs.

Along this thesis we call exception path a path in a program call graph that

links the signaler and the handler of an exception. Notice that if there is not a

handler for a specific exception, the exception path starts from the signaler and

finishes on program entrance point. In Figure 1, the exception path of EX is

<a1→mA→mB→mC→a2>. Therefore, the exception flow comprises three main

moments: the exception signaling, the exception flow through the elements of a

program, and the moment in which the exception is handled or leaves the bounds

of the software system without being handled (becoming an uncaught exception).

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 35

Besides these three main concepts that compose an exception handling

mechanism, some other concepts related to the Java exception handling

mechanism - that will be used along this work - are described bellow:

Exception Interfaces (Miller and Tripathi, 1997). The caller of a method

needs to know which exceptions may cross the boundary of the called one. In this

way, the caller will be able to prepare the code beforehand for the exceptional

conditions that may happen during system execution. For this reason, some

languages provide constructs to associate to a method’s signature a list of

exceptions that this method may throw. Besides providing information for the

callers of such method, this information can be checked at compile time to verify

whether handlers were defined for each specified exception. This list of

exceptions is defined by Miller and Tripathi (1997) as the exception specification

or exception interface of a method. Ideally, the exception interface should provide

complete and precise information for the method user. However, some languages,

such as Java and AspectJ, allow the developer to bypass this mechanism. In such

languages exceptions can be of two kinds: checked exception – that needs to be

declared on the method’s signature that throws it – and unchecked exception – that

does not need to be declared on the signaler method’s signature
3
. As a

consequence, the client of a method cannot know which unchecked exceptions

may be thrown by it, unless s/he recursively inspects each method called from it.

For convenience, in this thesis we split this concept of exception interface in two

categories:

(i) the explicit exception interface that is part of the module (method or method

like construct) signature and explicitly declares the exceptions; and

(ii) the complete (de facto) exception interface which captures all the exceptions

signaled by a module, including the implicit ones not specified in the

module signature.

In the rest of this thesis, unless it is explicitly mentioned, we use the

expression “exception interface” to refer to a complete (de facto) exception

3
 In some situations, to list all the exceptions that may scape from a method in the throws clause

may become unworkable. Some exceptions, for instance, cannot be adequately handled inside the

program (e.g., out of memory exception). Forcing the developer to list all of them could lead to

unnecessary work during development and maintanence tasks.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 36

interface. Although both the normal interface (i.e. method signature) and the

exception interface of a method can evolve along software life cycle, the impact

of such change on the system varies significantly. When a method signature

varies, it affects the system locally, i.e. only the method callers are directly

affected. On the other hand, the removal or inclusion of new exceptions in an

exception interface may impact the system as a whole, since the exception

handlers can be anywhere in the code. As depicted in Figure 1, an aspect can add

behavior to a method without changing the normal interface of that method.

However, the additional behavior may raise new kinds of exceptions, hence

impacting the exceptional interface of that method.

Exception Types and Exception Subsumption. Object-oriented languages

usually support the classification of exceptions into exception-type hierarchies

(Miller and Tripathi, 1997; Garcia and Rubira, 2001). In Java the exception

interface is therefore composed by the exception types that can be thrown by a

method. Each handler is associated with an exception type, which specifies its

handling capabilities – which exceptions it can handle. The representation of

exceptions in type hierarchies allows type subsumption (Miller and Tripathi,

1997; Robillard and Murphy, 1999) to occur: when an object of a subtype can be

assigned to a variable declared to be of its supertype - the subtype is said to be

subsumed in the supertype. When and exception is signaled, it can be subsumed

into the type associated with a handler, if the exception type associated with the

handler (i.e., the hander type) is a supertype of the exception type being caught.

Exception Handling Contexts. The exception types are always treated in the

same way at specific regions in a program called Exception Handling Contexts

(EHC) (Goodenough, 1975). Each EHC is associated with one or more handlers,

which are responsible for handling exceptions from a given time. Therefore, when

an exception is signaled inside an EHC a handler is chosen among the handlers

associated to the EHC according to the type of the signaled exception.

2.2.2.
Exception Handling Constructs in AspectJ

In AspectJ as in Java, try blocks define exception handling contexts, catch

blocks define the exception handlers, and finally blocks define clean-up actions

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 37

- executed whether or not exceptions are raised (Gosling et al., 1996). Exceptions

are represented in a hierarchical structure, as illustrated in Figure 2.

Throwable

Exception Error

RuntimeException

Figure 2. Exception Hierarchy in Java.

According to this structure every exception is an instance of the Throwable

class. The user defined exceptions can be represented as a checked (extends

Exception) or an unchecked exception (extends RuntimeException). By

convention an Error represent an unrecoverable condition, they usually represent

platform problems (Gosling et al., 1996; Robillard and Murphy, 2003).

Checked exceptions must be declared as part of the method signature that

propagates it. The use of checked exceptions allows the compiler to statically

check that appropriate handlers are provided within the system. The use of

checked exceptions, however, is costly to maintain (Dooren and Steegmans, 2005)

since every method on the call chain of a method that raises a new exception

should be updated to declare this exception (on the throws clause defined on its

signature) or handle it.

On the other hand, the unchecked exceptions do not need to be declared on

the interface of their signalers, but as a consequence there is very little that can be

checked at compile time. The client of a method cannot easily know which

unchecked exceptions may be thrown by the method unless he/she carefully

inspects the code of the method and the methods called from it – which can

become a very time consuming or infeasible task. Moreover, the developer is not

warned by the compiler if an unchecked exception is not handled inside the

application. When libraries are used, the developer does not have access to their

source code and thus needs to rely on the library documentation about the runtime

exceptions that should be thrown – which, more often than not, are neither

complete nor precise (Thomas, 2002; Sacramento et al., 2006). As a consequence,

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 38

unhandled unchecked exceptions can be seen as one of the major sources of bugs

in current Java systems (Jo et al., 2004).

AspectJ reuses the same Java constructs to raise (throw statement), handle

exceptions (try-catch-finally) and specify exception in the method signature

(throws clause). In AspectJ the exception interfaces of advice must be based on

exception interfaces of the advised methods. It should follow a rule similar to the

“Exception Conformance Rule” (Matsuoka and Yonezawa, 1993; Miller and

Tripathi, 1997) applied during inheritance, when methods are overridden. As a

result an advice can only throw a checked exception if it is thrown by “every”

intercepted method. To overcome this limitation most of the advices throw

unchecked exceptions
4
 which do not need to be specified by every advised

method. In other AO languages such as Spring AOP and JBoss AOP aspect

advices are represented as regular Java, methods, which can throw any exception

(checked or unchecked).

Some of the AspectJ constructs can be used to handle exceptions, as

presented below:

• Handler Pointcut Designator. It provides a pointcut designator that allows

an aspect to advise the places where specific exceptions are handled, and

associate a specific handling task such as logging the exception being

handled.

• Advice After and After Throwing. These kinds of advice allow aspects to

be invoked when an exception is thrown by a method. They allow extra

code to be executed when an exception is signaled. Such code may for

instance wrap the original exception in a new one – however the code

needed to perform such wrapping can become complex in some scenarios.

• Around Advice. This advice wraps the body of the advised method, and is

able to include additional behavior before and/or after it, or even replace

the method body. This advice can be used to handle exceptions thrown by

the method and return the program to its normal control flow.

4
 Sometimes and advice throws a checked exception that is wrapped by an AspectJ specific

unchecked exception (i.e., SoftException) through the use of the declare soft construct.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 39

2.3.
Checking the Reliability of Exception Handling Code

Despite its importance, several studies have shown that exception handling

code is often the least well understood (Sinha and Harrold, 1998; Robillard and

Murphy, 2000; Robillard and Murphy, 2003), documented (Cabral and Marques,

2007) and tested (Sinha and Harrold, 1999; Fu and Ryder, 2005) part of the

system. The reasons are twofold. Firstly, since the exception handling code is not

the primary concern to be implemented, it does not receive much attention during

system design, implementation, and testing – usually during testing almost all the

attention is paid to the “normal flow” of the program. Secondly, testing

exceptional code is inherently difficult due to: (i) the difficulty to simulate the

causes of exceptional conditions during tests, and (ii) the huge number of

exceptional conditions that can happen in a system – which may lead to the test-

case explosion problem (Myers, 2004; Bruntink et al., 2006). The following

sections briefly describe possible verification approaches for the exception

handling code.

2.3.1.
Checking the Reliability through Testing

One way of checking the reliability of the exception handling code is

simulating the exception occurrences during tests by fault injection strategies (Fu

et al., 2004 ; Fu et al., 2005). In such strategies extra code, that throws exceptions,

is injected at specific points in the code at compilation time. The test cases are

therefore responsible for checking whether the exception handling code is

executed as expected. Alternatively, the developer can simulate exception

conditions through the use of mock objects. A mock object is a test pattern

(Binder, 1999) proposed by Mackinnon et al. (2001) which replaces domain code

with a dummy implementation that emulates real code. Mock objects can be used

to easily simulate real objects behaviors that are hard to trigger, such as: a network

error, faults derived from the interaction between the system under test and

specific hardware or middleware (Mackinnon et al., 2001). They have been

largely used in the development of automatic unit tests in OO systems.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 40

The testing approaches require many faults to be simulated, and every

exception path to be verified. The number of test-cases created per signaled

exception, may make this technique prohibitive when testing the exception

handling code of medium-sized systems - since the number of exceptions that can

be possibly thrown inside such systems is usually large.

2.3.2.
Checking the Reliability through Static Analysis

The basis for static analysis is the desire to offer static compile-time

techniques to predict behaviors arising dynamically at run-time when executing a

program. The static analysis techniques have often been used in compiler design

and have recently started to be used in the validation of software (Louridas, 2006).

Recently, approaches based on static analysis have been proposed to

improve the reasoning about exception flow (Robillard and Murphy, 2003; Fu and

Ryder, 2005) and assure the reliability of exception-related code (Bruntink et al.,

2006). Bruntinik et al (2006) implemented a static checker called SMELL capable

of statically detecting violations on exception handling policies of idiom-based

systems developed in C. SMELL performs an intra-procedural static analysis in

each function in order to find faults on exception handling code.

Other works (Robillard and Murphy, 2003; Fu and Ryder, 2005) propose

algorithms and supporting tools for the inter-procedural analysis of exception

flows. The exception-flow analysis is a dataflow analysis, resembling the analysis

for finding def-use pairs (Myers, 2004), but instead of running on the control-flow

graphs, it runs on the program call graph. Continuing the parallel between

exception-flow analysis and def-use algorithms, the place in which an exception in

thrown corresponds to the variable definition, and the place where it is handled

(by an enclosing try-catch block) corresponds to the variable use.

When an exception is thrown it propagates backwards on the program call

graph until a handler is found. Such tools discover if no handler is defined for an

exception - if the exception reaches the program entrance point it is classified as

an uncaught exception. During the exception propagation analysis, each method (a

node in the call graph) in which the exception propagates is recorded as part of the

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 41

exception path and such an exception will be one of the exceptions that compose

the exception interface of the method.

It is cheaper to check exception handling rules conformance statically, than

creating test-cases to exercise every exception. However, the solutions proposed

so far to statically analyze the exception paths are both unsound and incomplete

(Chang et al., 2001). A complete checker would find all exception paths (and

possibly the bugs related to them) and if it was sound it would report only real

paths. Since such approaches are based on conservative analysis (Rountev et al.,

2004) they can generate false positives. A false positive occurs for example when

a tool reports an infeasible exception path (i.e., a path that will never be executed

in runtime – common in most conservative static analysis).

However, such properties do not necessarily harm the usefulness of such

tools given that the tools still allow the developers to analyze large number of

exception paths (Robillard and Murphy, 2003; Fu et al., 2005) and detect the bugs

on it (Bruntink et al., 2006) which would be very costly to detect manually.

Experimental results have shown that the precision of such tools are currently

within acceptable margins (Robillard and Murphy, 2003; Fu et al., 2005).

2.4.Summary

Aspect oriented programming (AOP) was proposed as a way to modularize

(Kiczales, 1996; Kiczales et al., 1997) crosscutting concerns, aiming at increasing

software maintainability, extensibility and reuse. AspectJ (Kiczales et al., 2001a;

Kiczales et al., 2001b) is the most used aspect-oriented programming language

developed on top of Java. Besides AspectJ other AO languages have been

proposed, most of them are very similar and follow a join point model very

similar to the one proposed by AspectJ.

Empirical studies have shown that AOP can indeed promote modularity

(Garcia et al., 2005), design stability (Greenwood et al., 2007), and that aspects´

abstractions can be used to modularize the exception handling concerns in some

situations (Filho et al., 2007). However such empirical studies do not account for

the exceptions that may flow from aspects, or the ones that are caught by aspects,

and what consequences they may bear.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 42

An uncaught (Jo et al., 2004) exception thrown during advice execution

impairs all system functionality. So, any advice capable of throwing an exception

is potentially error-prone. Aspect developers may do their best to avoid exceptions

from flowing through aspects (ex: avoiding explicit throw statements inside

advices). However, any library called by an advice may throw an unchecked

exception, and also an aspect may use a huge data structure that may cause a

memory overflow, which may result in OutOfMemoryError - whereas no such

error would be thrown without the aspect. The absence of empirical studies to

evaluate the consequences of exceptions thrown by aspects, and the lack of

approaches to help developers when assuring the quality of exception-related code

in AO systems compose the motivation of this work described in next chapters.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

